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Wave interactions - the evolution of an idea 

By 0. M. PHILLIP§ 
Department of Earth and Planetary Sciences, 

The Johns Hopkins University, Baltimore, Maryland 21218 

This essay gives a personal and possibly incomplete history of the way in which the 
simple idea of weak resonant wave interactions grew to find application to a variety 
of phenomena in several contexts. The development involved incremental steps by 
many people in the past twenty pears, gaining simplicity with maturity. The final 
stage seems to be approaching when the limits of usefulness of the idea are beginning 
to become apparent. 

It is unusual in fluid mechanics, and perhaps in science generally, for a body of 
theory to spring in essence complete from the mind of one person. Much more charac- 
teristic is a process of evolution over time with sparks of insight contributed by first 
one, then another, interspersed with the patient examination of what seem in retro- 
spect to be minutiae, discussion of particular cases, and sometimes even errors that  
lead to further understanding. Twenty years later, the whole thing may seem so 
obvious and so transparent that  one wonders why it took so long and such pains to 
understand something that can now be explained in only a few pages. There are, of 
course, exceptions, or instances that seem to be exceptions. The theory of sound 
generation by turbulence in subsonic flow was set forth by James Lighthill in two 
monumental papers (1952, 1954) that  provided the basis for much future work includ- 
ing extensions to supersonic flow, but even this did not arise without the treading of 
tortuous paths. Lighthill’s efforts to construct the theory are recounted in an earlier 
unpublished report ( 1  950) to the Aeronautical Research Council in London, in which 
one can see the basic ideas taking shape. One of the most illuminating parts of this 
report is $3 ,  entitled ‘An erroneous approach’. Yet it is a very plausible one, and 
only by understanding why it is erroneous did the correct theory emerge. 

The resonant interactions among waves provide an example that is perhaps more 
characteristic - a group of phenomena in which the basic ideas are fairly simple and 
to which many people contributed. It involved steps that were important at  the time 
and hard to achieve yet which, with the passage of time, seem only small parts of a 
pattern whose overall outline is now fairly clear. Some pieces are still fuzzy but it 
may be of interest to trace the way in which our present understanding was pains- 
takingly won. 

It is perhaps surprising to remember that, as late as 1950, ‘waves in fluids’ usually 
meant surface waves and that  the body of theory available was predominantly con- 
cerned with infinitesimal waves in which the surface boundary conditions can be 
linearized. There had been, of cowse, the classical works on finite-amplitude solitary 
waves in shallow water and the nineteenth-century works by Stokes on the profile 
shape and phase speed of a train of permanent waves in deep water. Some pioneers 
such as Long (1953a, b ,  1954, 1955) were experimenting with internal gravity waves 
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and developing a theoretical description of the phenomena that they measured, but 
there was little observation of these in the atmosphere or the ocean and little notion 
ofthe variety and richness oftheir behaviour that would later be found. Surface waves 
on deep water were regarded as essentially linear and spectra were constructed by the 
superposition of linear waves - nonlinear effects were generally thought to be re- 
stricted to the relatively trivial distortion from a sinusoidal profile described by 
Stokes so long ago. 

For me, the genesis ofthe whole thing was, I suppose, the opportunity in the 1950s 
to  work as a young research student a t  Cambridge. G .  I. Taylor was active; George 
Batchelor, Alan Townsend and Ian Proudman were all in the forefront of turbulence 
research. The atmosphere was intense and pervasive - the very difficult problems of 
turbulence were nonlinear and nonlinearity meant energy transfer among different 
scales of motion. When later I became interested in surface waves as the result of a 
seminar by Fritz Ursell, I found that there did not seem to be anything in the wave 
literature analogous to  this. The nonlinearities in the governing equations for waves 
might indeed be weak, not strong as in turbulence, but they were there. Did they 
provide energy exchanges among different waves in some way similar to  that among 
different Fourier components in a field of turbulence Z 

Had I been more literate in the mainstream of ordinary physics, I would have 
known that a similar question had been comidered by Peierls in 1929 in connexion 
with secular interactions between random lattice vibrations, but I didn’t, so I under- 
took the task of laboriously examining the interactions among two gravity wave 
trains with arbitrary wavenumbers k,, k, on the horizontal plane, to see whether 
and under what conditions they would transfer energy to  build up a third component. 
Even to the second order in the Stokes expansion, the algebra was extraordinarily 
tedious (a harbinger of things to come) and the results were entirely negative - to  
this order there only appeared the bound harmonics a t  wavenumbers k, k k,, 2k,, 2k2, 
whose amplitudes remain forever small compared with those of the primary waves. 
The mathematics used was very primitive - an embarrassment today - but sufficient 
to show what I did not want to find: no continuing energy transfer for any configura- 
tion, just bound harmonics analogous to  those of Stokes. 

But there had to be some sort of energy transfer, so I was forced to the third order 
of approximation where the algebra was worse. There I found what I was looking for - 
if there existed two wavenumbers with 2k, - k, = k,, say, and frequencies such that 
2a, - a2 = g3, say, in which, for each, a$ = (gk,)*, then a steady-state solution for the 
triad did not exist. The amplitude of the third wave a3, if initially zero, would grow 
linearly in time. It was like the resonant excitation of a linear oscillator - the two 
primary waves produce a, perturbation a t  the wavenumber k, and, if the frequency 
of this perturbation corresponds to the natural frequency of a free wave with this 
perturbation wavenumber, then the amplitude of the response would grow linearly. 
The paper describing this work (1960) was extremely tedious and stopped as soon 
as the fact of the energy transfer was found in this special case; it was still far from 
giving the capability of describing the energy transfer in a random field of waves such 
as that found at sea. 

The algebra had already been daunting and it seemed that, if there were to be any 
hope of achieving this goal, the formulation had to  be simplified. An attempt was 
made (1961) to find exact expressions for such things as wave kinetic energy density 
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in terms of the surface properties, but this was not in the end fruitful. The next steps 
were to be taken elsewhere. 

At about this time, Sir George Deacon organized a meeting that was held a t  Easton, 
Maryland, to discuss ocean waves and I was invited to present my paper. The reaction 
from some well-known and senior people in the field was, to  my astonishment, vigorous 
and hostile, expressing the flat disbelief that different wave components could exchange 
energy a t  all. My mathematics was certainly very primitive but Michael Longuet- 
Higgins, to whom I had sent a copy of the manuscript, offered his cautious and most 
welcome support and Klaus Hasselmann, whom I met there for the first time, was 
working quite independently along the same lines but with greater generality, so the 
sharp, intense encounter ended with a stand-off. It had been my first experience of 
scientific acrimony, and not a pleasant one. 

Hasselmann had been trained as a theoretical physicist and his work, embodying 
a more powerful scattering theory formulation, appeared in 1962 and 1963. Already 
it was apparent that resonant interactions among surface gravity waves occurred 
among certain sets of four wavenumbers for which simultaneously 

and ui = (gk,):; my 1960 paper had considered only the special case when k, = k,. 
This work of Hasselmann’s provided the basis for what I had tried to do without 
success - the calculation of the transfer of energy among different wave components 
a t  sea. The calculation was, however, still cumbersome and difficult; simplifications 
would appear only much later. 

One positive result of the Easton meeting was Michael Longuet-Higgins’ conviction 
that these resonant interactions really should be demonstrated experimentally and 
in 1962 he suggested how it should be done. He and Norman Smith undertook the 
experiment (as did we a t  Johns Hopkins), generating two wave trains from adjacent 
sides of a square tank, adjusting the frequency ratio about resonance and measuring 
the int,eraction product. We started from scratch by building the tank and the experi- 
ments at the (then) National Institute of Oceanography were finished long before ours. 
Nevertheless, they graciously held up the publication of their results for a couple of 
years until our experiments were completed in order that  the two accounts could be 
published simultaneously (Longuet-Higgins and Smith 1966; McGoldrick, Phillips, 
Huang and Hodgson 1966). The results were clear - the resonant interactions did 
exist and the growth rates were close to those calculated. 

By this time, though, there was not much doubt that these effects were real. In  
1962, David Benney at M.I.T., using the then new techniques for analysis of slowly 
varying wave trains, had derived the complete set of interaction equations in the form 
(slightly corrected) 

cil = ial(gl,a,a? +gl2a2a$ +gl3a3a; +g,,a,a:) +ihe,a$a,a, (2) 

together with similar equations for the rates of change of the other component ampli- 
tudes a2, a3 and a4. The g,,  and h are real coefficients of the interaction depending on 
the configuration k,, . . . , k,, but whose calculation required SO much labour. Also in 
1962, Michael Longuet-Higgins and I had realized that the degenerate form of (1) 
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in which b, = k, and k, = k, represents a phase velocity modification that occurs 
when any two wave trains run together. This is immediately obvious from Benney’s 
equation (2) being represented by the first group of terms on the right-hand side 
giving a rate of change of a, in quadrature with a,. The first term in the group repre- 
sents the fractional increase in phase velocity of f(ak)2 found by Stokes in 1847. 
Benney showed also that  the set of equations possess energy and momentum integrals 
as well as an integral specifying the partition of aa*/u - the wave action that has 
since become a pivotal quantity in studies of wave-current interactions. 

If gravity waves on deep water interacted in this way, it was natural to enquire 
what modifications would result with the additional influence of capillarity, and Larry 
McGoldrick’s thesis was devoted to this question. It appeared immediately that 
although there are no solutions to the set of equations 

where, for gravity waves, (T = (gk)*, there are solutions for gravity-capillary waves 
in which (T = (gk+ yk3)*, where y represents the surface tension divided by density. 
Resonant interactions were found among gravity waves only a t  the third order, 
among sets of four waves, but for gravity-capillary waves they appear a t  the second 
order among three wave components. The evolution equations for the wave ampli- 
tudes are also much simpler: 

6 ,  = iha,a,a,, 

There were three important consequences of this simplification. First, the algebra 
involved in the analysis was much simpler. More importantly, the interaction time 
scale is shorter, (wave slope)-l times the wave period rather than (wave slope)-2 for 
gravity waves, so that the manifestations of the interactions are more rapid. Finally, 
the frequencies involved with capillary-gravity waves are higher than with pure 
gravity waves so that experimentation is simpler and possible with much smaller 
apparatus. McGoldrick’s thesis was published in 1965 and subsequent work by him 
(1970, 1972), by Kim & Hanratty (1971) andNayfeth (1971) has demonstrated many 
fascinating phenomena including subharmonic resonances and the near-resonance 
of short capillary waves riding on larger gravity waves. 

The next conceptual step was taken by Keith Ball who described it to me one day 
in 1963 while we were riding in the train from London to Cambridge. He had realized 
that, in a system capable of supporting more than one type of wave motion, energy 
could be transferred among the different types in precisely the same way. He was 
concerned specifically with a two-layer system with a free surface and an internal 
interface separating fluids with densities p above and p + Ap below. He pointed out 
that if two surface waves have wavenumber magnitudes (and hence frequencies) that 
arealmost the same,then the small difference frequency can match that for an internal 
wave whose wavenumber is the vector difference of the two surface wavenumbers. A 
triad of three surface waves could not undergo resonant interactions, but one consist- 
ing of two surface waves and one internal wave could. Ball’s paper was published in 
1964; though pointing out that these interactions could provide a source for atmos- 
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pheric and oceanic internal waves, he developed his calculations in greatest detail for 
the simplest case when both layers are shallow. 

Oceanic internal waves were beginning to be observed then, following the pioneering 
measurements of Haurwitz, Stommel and Munk (1959), but it was far from clear how 
they were generated. The question of whether the energy flux from surface waves to 
internal waves by resonant interactions was significant or not, was of obvious oceano- 
graphic importance and Ball’s (1964) work was followed shortly by that of Steve 
Thorpe (in his 1965 Ph.D. dissertation), Leonid Brekhovskikh and his group in 
the Soviet Union (1972) and finally Watson, West and Cohen (1976) in California. 
This last analysis, using a Hamiltonian formulation and the now familiar apparatus 
of statistical mechanics, predicted that, under characteristic oceanic conditions, 
the energy flux to internal waves by this process is indeed a substantial fraction 
of the total dissipation rate from internal waves as estimated earlier by Chris Garrett 
and Walter Munk (1972). 

By 1970 or so, it had become apparent that another manifestation of this same 
interaction occurs when a train of short surface waves encounters an internal wave of 
much longer wavelength on an underlying thermocline, and suffers modulations as a 
result. This phenomenon had been observed in the Anadama Sea by Perry and 
Schimke in 1965 and one facet of interest is that the dynamics can be viewed in two 
different and complementary ways. From the point of view of resonant wave inter- 
actions, the interaction of a surface wave with wavenumber k with an internal wave 
with wavenumber ki = dk < k will generate a new surface component with wave- 
number k + Sk in a resonant manner provided the frequency difference Sa of the six- 
face waves matches the frequency ai of the internal wave. Thus in (3), k i  = Sk, ai = Sa 
and the phase velocity of the internal wave 

ci = g i / k i  = dG/Sk = cg, ( 5 )  

the group velocity of the surface wave. The growth of this new surface wave compo- 
nent at a wavenumber different by Sk from that of the one initially present, leads to 
an increasing groupiness of the surface waves with a group wavelength equal to that 
of the internal wave. In  most regions of the ocean, the phase speeds of low mode 
internal waves on the thermocline range up to 50 cm/sec or so, and the condition ( 5 )  
can be satisfied only by relatively short surface wave components. The modulations 
produced in this way appear as periodic bands with varying roughness of the sea 
surface and are seen frequently in satellite imagery of coastal waters. 

The phenomenon can properly be viewed in terms of resonant interaction theory 
only when all the wave slopes are small and when the surface currents produced by 
the internal wave train are small compared with its phase speed. This condition is 
unduly restrictive. It is more rewarding usually to consider the process as one in which 
the short surface waves interact with a slowly varying, propagating current pattern 
U ,  supposed given and produced by the internal wave. It is then possible to use the 
conservation laws developed by Francis Bretherton and Chris Garrett (1969) and 
others for wave trains in slowly varying media. The restriction on the magnitude of 
the surface current implicit in resonant interaction theory is then removed but, on 
the other hand, we lose information about the modification of the internal wave as 
the result of the interaction. (It could possibly be recovered by a careful analysis, 
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not yet done.) In  a frame of reference moving with the internal wave, the flux of 
action in the surface wave train is 

(U + cg - ii) d, 

where d represents the wave action density; if the internal and surface wave speeds 
satisfy ( 5 )  even approximately, then variations in the magnitude and direction of 
the surface current U induced by the internal wave can reverse the direction of the 
action flux and lead to local concentrations and reductions in the surface wave action 
density. If the phenomenon is viewed in this way, it is evident that  a train of inlernal 
waves is not necessary to influence the surface wave pattern - a single current pulse 
associated perhaps with an internal soliton can produce the action flux divergence 
and a pulse modulation in the ourface wave. The most complete early analysis of this 
problem by Ann Gargett and Blyth Hughes in 1972 was complemented by field 
observations Eade in the Strait of Georgia, British Columbia; comprehensive labora- 
tory measurements in 1974 by John Lewis, Bruce Lake and Denny KO placed the 
relation between observation and theory on a good quantitative basis. 

I n  the meantime, it had become clear that resonant interactions could provide not 
only a source of internal wave energy and a mechanism for surface wave modification, 
but also a means for the redistribution of energy among differsnt modes or wave- 
numbers in the spectrum of internal waves in a continuously stratified fluid. The 
interaction conditions (3) do admit solutions for small-scale internal waves for which 
c = N cos 6, where N is the stability frequency and 6 the inclination of the wave- 
number vector to the horizontal. Interaction diagrams were illustrated in the first 
edition of Dynamics of the UTper Ocean (1966). Experiments by Seelye Martin, Bill 
Simmons and Carl Wunsch (1972) in a large stratified tank alongside the docks at the 
Woods Hole Oceanographic Institution showed the formation of new internal modes 
following mechanical stimulation cf just one. The first systematic calculation, how- 
ever, was undertaken by Henry McComas in his Ph.D. dissertation of 1975, but not 
published until 1977. The celebrated but empirical Garrett-Munk spectrum (1972) for 
oceanic internal waves had been very successful in synthesizing a variety of different 
types of internal wave measurements, including spectra of horizontal and vertical 
traverses, frequency spectra and coherences, and McComas’ calculations showed 
that the Garrett-Munk spectrum was indeed quite close to a state of statistical 
equilibrium under the net effect of the wave interactions. This gave a substantial 
impetus to the belief that the internal wave spectrum was a consequence primarily 
of the balance among these interactions, rather than being limited by a ‘saturation’ 
process involving sporadic local instability somewhat analogous to that in surface 
waves under wind with local wave breaking. But all was not entirely well. With the 
energy levels of the Garrett-Munk spectrum, the time scales of certain of the inter- 
actions were not long compared with the wave period - the interactions were not 
weak 3s visualized in the simple theory. It had taken us quite a long way: but some- 
thing better was needed. We will pick up this thread again later. 

Another starting point came from experiment in an unexpected way. Brooke 
Benjamin and Jim Feir had been trying to produce a uniform train of rather steep 
surface waves in a long laboratory tank without much success - the wave train always 
degenerated into a series of wave groups. This troublesome phenomenon had indeed 
been known for some time by engineers Rho operate long ship-testing tanks and they 
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had usually attributed it to an inadequacy in design of the plunger that generated the 
wave train. Benjamin and Feir’s justly famous contribution lay in their recognition 
that the degeneration had nothing to do with plunger design but was the end result 
of an intrinsic instability in finite-amplitude surface waves. Although the paper 
describing this work was not published until 1967, the experiments and their theoreti- 
cal analysis were in essence complete some years earlier. The phenomenon, they 
showed, depended on a delicate balance between amplitude dispersion and resonant 
de-tuning and, although their analysis was quite different, the same elements seemed 
to be involved as were contained in Benney’s equations for weak surface wave inter- 
actions. I recall a series of informal discussions with them on this point as early as 
1964, but it was not until 1967, in preparation for a discussion meeting a t  the Royal 
Society, that I was able to make the connexion by taking k, = k,,in Benney’s equation 
as the wavenumber of the primary wave train with k, and k, as neighbouring wave- 
numbers of a small perturbation. With this rather obvious simplification the insta- 
bility appeared. The classical Stokes solution for finit,e-amplitude surface waves, 
known for over one hundred years, had been shown by Benjamin and Feir to be 
unstable, a fascinating but still isolated discovery that seemed a t  that time specific 
to surface waves. 

Quite independently of this, I think, Andy Acrivos and Russ Davis, working in 
California, were finding experimentally that lowest-mode internal waves on a thin 
density interface were also unstable but in a different way, leading to an exponentially 
growing second mode perturbation. They did recognize this a t  the outset as a resonant 
interaction phenomenon, a simpler one thac the Benjamin-Feir instability since the 
effect occurred a t  second order and there is not the resonant de-tuning required to 
compensate for amplitude dispersion as there is in the surface wave case. The general 
occurrence of these instabilities was perceived by Klaus Hasselmann, who published 
a short note immediately following the Davis-Acrivos paper (1967). He showed from 
equation (4) that  any wave train with wavenumber k,, capable of undergoing resonant 
interactions as specified by (3), is unstable to a perturbation wave with wavenumber 
k, or k,. Similar effects should then occur in a variety of contexts ranging from small- 
scale internal waves in the ocean to inertial oscillations, even waves on a planetary 
scale in the atmosphere or ocean of the rotating earth. Hasselmann’s theorem alone 
makes comprehensible the qualitative features of a variety of phenomena including 
the degeneration of standing internal waves demonstrated by Angus McEwan (1971) 
as well as the subharmonic instabilities in gravity-capillary waves studied eariier by 
Larry McGoldrick; its extension to the third-order instabilities in surface waves (of 
which the Benjamin-Feir instability is the archetype) constrains the directions on 
the wavenumber plane of the energy fluxes in the vicinity of a sharply peaked ocean 
wave spectrum. 

The study of resonant wave interactions was only one of the directions of research 
into the nonlinear behaviour of waves during these years. By the mid 1970s) these 
calculations were becoming almost routine, but extremely significant advances were 
being made elsewhere. The properties of finite-amplitude slowly varying wave trains 
were being elucidated in a series of beautiful contributions by Gerry Whitham (1960, 
1962, 1965) using new powerful averaged Lagrangian methods, by David Andrews 
and Michael McIntyre ( 1 9 7 8 ~ )  b )  in developing a new and general formulation of the 
action conservation principle involved in the interaction of waves with slowly varying 
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media, and by several others. Although Whitham’s formulation provided the possi- 
bility of exact analysis, in the investigation of specific problems, approximations were 
still usually required. In  1967, David Benney and Alan Newel1 a t  M.I.T. showed that, 
in a slowly varying surface wave train,of mean wavenumber k, and frequency ro, 
whose envelope is specified by A(x ,  t ) ,  the variation in the envelope could be specified 
by the equation 

correct to the third order. This has subsequently been called the ‘nonlinear Schrodin- 
ger equation ’, although the A,, term has the opposite sign from the classical equation. 
The same equation for the wave envelope was re-derived, apparently independently, 
by Hasimoto and Ono (1972) in Japan, Chu and Mei (1970) in the United States and 
Zakharov (1968) in the USSR and extended by Davey and Stewartson (1974) in the 
United Kingdom. Such is the efficiency of scientific communication ! 

Now, equation (6) is linear except for the final cubic term; i t  seemed to me while 
a t  Seattle in the summer of 1979 that if Benney’s equations ( 2 )  capture the dynamics 
of surface waves to  the third order, then the nonlinear Schrodinger equation should 
be derivable from them under the additional restriction that the wave train be slowly 
varying or that  the spectrum be very narrow. Two separate approximations are 
involved in equation (6) ,  that the wave slopes be small, e < I ,  and that the spectral 
band-width, the ratio of wavelength to group length, A = 6k/k < 1 ; Benney’s equa- 
t’ion ( 2 )  requires only the first of these. The derivation is fairly simple but does not 
seem to have been published previously and so is given in the appendix. Henry Yuen 
and Bruce Lake (1975) gave a derivation based upon Whitham’s averaged Lagrangian 
which requires 4 < 1 but does not severely restrict E - equation (6) was recovered by 
an expansion in powers of 8. The self-interaction term, the final term on the left-hand 
side, is of order e3, while the middle terms are of the order €A2. The first two terms in 
the equation are individually of order €4, but their sum (a /a t  + c,a/ax) A is of order 
c3 or €a2. When A < e < 1, we recover an almost uniform wave train and (6) reduces 
to iA, = i k i  (T,] A I zA, which specified the amplitude dispersion or the Stokes increase 
in phase velocity to the third order. When B < A < I,  we have linear propagation of 
small-amplitude wave groups. The interesting new phenomena uncovered in the past 
couple of years occur when E N A < 1. 

The Benjamin-Peir instability is a narrow-band phenomenon and can be described 
by the nonlinear Schrodinger equation as well as by the more general resonant inter- 
action equations. Henry Yuen and Bruce Lake recovered Benjamin and Feir’s analy- 
tical results from this equation in 1978. More interesting, however, are the new 
phenomena uncovered by the TRW group in California from a study of equation (6), 
the most striking of which is the existence of envelope solitons. 

Envelope solitons are groups of finite-amplitude surface waves whose envelope 
propagates without change of form and which are capable of running through other 
such groups without permanent change, except possibly for phase shifts. They must 
be distinguished from pulse solitons or solitary waves in shallow water (and their 
internal wave cousins on a thin or shallow thermocline) in which a single wave crest 
can have these properties. 

The dynamics of envelope solitons in deep water involves a balance between ampli- 
tude dispersion and linear dispersion about the carrier frequency. For sufficiently 
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small slopes and band-widths, the nonlinear Schrodinger equation (6) can be used to 
find the envelope shape, and an exact solution to the one-dimensional equation was 
given by Zakharov and Shabat (197 1 )  in the USSR and explored in much more detail 
by Henry Yuen and Bruce Lake (1975, 1978) and their co-workers. It is of the form 

A = b, sech E { I C , ( Z  - cgt)} exp ( - $ie%,t), (7) 

where b, is the central amplitude, and E = kobo. Note the necessary balance involving 
amplitude dispersion and linear dispersion, with the band-width equal to the wave 
slope. The number of waves in the envelope soliton scales as E-1. 

Yuen and Lake showed that an initial pulse approaches the asymptotic form (7)) 
t,ogether with a dispersive residual, in the time scale 6-2 wave periods characteristic 
of all weak interaction phenomena, and careful experiments confirmed this. They also 
demonstrated experimentally that, when envelope solitons with different carrier fre- 
quencies run together in a long tank, there is no interaction except for a change in 
phase. This is not at all surprising in view of the selectiveness of weak interactions -in 
the configurations chosen resonance is not possible so there is no energy interchange. 
Envelope solitons will interact significantly only when their wavenumber bands over- 
lap, or, with obliquely travelling solitons, when the ratio of their carrier frequencies 
is appropriate for instability. (Note, though, that, because of the finite interaction 
time of the groups, (w)-l, the amplitude of the interaction product in this case will 
be smaller by order E than the amplitude of the original groups.) 

These envelope solitons are long-crested, but I would guess that there also exist 
analagous two-dimensional wave patterns that, to this order, propagate without 
change in envelope and which have the non-interaction property that I have des- 
cribed. If the spectrum consists of two narrow peaks about wavenumbers that form 
a parallelogram and lie on the central figure-of-eight interaction diagram for surface 
waves, the energy flux among the four components will cancel out for a specific shape 
of the spectral peaks and the same net balance of amplitude and linear dispersion should 
result, but I do not think that anyone has yet worked out the details. 

The situations in which resonant interaction theory has received good experimental 
support are those in which the wavenumber magnitudes involved in the interaction 
are of the same order. If the wavenumber scales are very disparate, the simple theory 
that has been developed to date comes unstuck. It may not be widely appreciated 
that, if the wave field contains components with widely different wavelengths, the 
Stokes expansion underlying Benney’s equations imposes an intolerable restriction 
on the amplitudes of the longest components. If both long and short waves are present, 
the shortest vertical length scale of the motion in the water is the short wavelength; 
for the Stokes expansion about z = 0 to be useful, a necessary condition is that the 
maximum displacement of the free surface (at a long wave crest) must be small 
compared with the shortest wavelength. In  all but the most trivial oceanic situations, 
this condition is strongly violated. 

The interactions between long and short waves cannot usefully be represented in 
terms of a Stokes expansion and cannot be included among the weak interactions. 
The point is not just a mathematical quibble-even the simplest physics of the 
oceanic situation involves orbital velocities of long waves that are comparable with 
or exceed the phase and group velocities of the short waves. A physical short-wave 
train is convected, distorted and turned by the distribution of long-wave orbital 
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velocity - it is certainly not a single Fourier component. The same kind of restriction 
came up in McComas’ studies of internal waves - the fluid velocities associated with 
large-scale internal waves may well exceed the propagation speed of the small-scale 
components so that they are significantly convectively distorted in a similar way. 
Michael Longuet-Higgins (1978) and I (1981) have looked a t  the strong interactions 
among long and short surface wave components; it is not yet clear how these convec- 
tive distortions will modify the weak interaction processes though Bruce West is 
addressing the problem in more detail and a t  greater depth than I can discuss here. 
Perhaps the simple ideas developed in the past twenty years by many people have 
reached their natural limit, a t  least in this direction, and further progress will be 
dependent on new mathematics, new physics and new intuition. 

Appendix. Derivation of the nonlinear Schrodinger equation from the 
resonant interaction equations 

Consider a wave group or a slowly varying wave train in which the surface displace- 
ment [ =  Ia(k)eixdk, x = k.x-a.t, 

and the only significant contributions come from a small range of wavenumbers and 
frequencies about k,, go. Equation (A 1)  can then be written as 

(A 1) 

[ = exp {i(k,. x - go t ) }  a(k) exp [ i { ~ .  x-  (a(k) - a,) t } ]  dk s 
(in which K = k - k,), specifying a wave train or group with wavenumber and fre- 
quency ko and go and with a local amplitude (or envelope) of 

A = [a(k) exp [ i { ~  . x - (cr(k) - a,) t ] }  dk (A 2) 

= Ia(k)e’Qdk, say. 

Now, the component amplitudes a(k) may be slowly varying ftinctions of time t 
as a result of weak interactions, so that the rate of change of the envelope 

A ,  = IcieiQdk-i[(a(k)-a,)ae@dk. (A 3) 

Since the spectrum is narrow, u(k) can be expanded about a,: 

where k, A is the spectral width. Since a = (gk)&, 

and 

and, if the 1-direction is chosen as that of k,, it follows from (A 4 )  that  
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to the second order in the band-width A. This can be substituted back into (A 3)) 
giving 

A,  + i- K1aei+du - i - K: aei$du + i - K$aei+du = /dei$du. (A 6) 
2kO s 8k; s 4ki uo s 

But, from (A 2) 
A ,  = i/Klaei$du, 

A,, = -[K;uei$du, 
A YY = -IKgae+du, 

so that (A 6) simplifies to 

A , + A  cr A,+-oA,,--oA~, icr icr = /dei@du. 
2k0 8kt 4ki 

Note that, to this point, there is no nonlinear dynamics at  all. The first two terms can 
be written (a/?% + c , a / a x )  A and represent envelope propagation with the group 
velocity. The next two represent the effects of (linear) dispersion about the carrier 
wavenumber and frequency, the band-width A being finite but small. 

The final term in (A 7)  is non-zero only because of the weak interactions. It is 
already of order s3 in the Stokes expansion parameter, so that, if the band-width A 
is small, the lowest order of approximation A0 suffices to give its leading term. From 
the weak interaction equation in the form appropriate to a continuous distribution 
of u(k) 

16ei@du = iT(ko)l ... ~S(k+kl-k2-k3)a*(kl)a(k2)a(k,)ei~dkdk,dk2dk,, (A 8) 

where, since all the wavenumbers concerned are nearly equal, 

T ( k  ... k,) = T ( k o ) ( l + O ( A ) )  = frkga,. 

Now if dl, &, q53 represent quantities like (A 2) for the other wavenumbers, in view 
of the resonance conditions, q5 = - q51 + q52 + q53; the delta function can be integrated 
over k and the integrals on the right-hand side of (A 8) can be separated: 

- &kicro[a*(kl) e-i$ldklja(k2) ei@zdk,/a(k,) eiCadk3 = -$ikiuoA*A2. 

Thus (A 7 )  becomes 

or, as it is usually written, 
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